81 research outputs found

    Effect of ENSO phase on large-scale snow water equivalent distribution in a GCM

    Get PDF
    Understanding links between the El Nino-Southern Oscillation (ENSO) and snow would be useful for seasonal forecasting, but also for understanding natural variability and interpreting climate change predictions. Here, a 545-year run of the general circulation model HadCM3, with prescribed external forcings and fixed greenhouse gas concentrations, is used to explore the impact of ENSO on snow water equivalent (SWE) anomalies. In North America, positive ENSO events reduce the mean SWE and skew the distribution towards lower values, and vice versa during negative ENSO events. This is associated with a dipole SWE anomaly structure, with anomalies of opposite sign centered in western Canada and the central United States. In Eurasia, warm episodes lead to a more positively skewed distribution and the mean SWE is raised. Again, the opposite effect is seen during cold episodes. In Eurasia the largest anomalies are concentrated in the Himalayas. These correlations with February SWE distribution are seen to exist from the previous June-July-August (JJA) ENSO index onwards, and are weakly detected in 50-year subsections of the control run, but only a shifted North American response can be detected in the anaylsis of 40 years of ERA40 reanalysis data. The ENSO signal in SWE from the long run could still contribute to regional predictions although it would be a weak indicator onl

    The MELODIES project: integrating diverse data using Linked Data and cloud computing

    Get PDF
    We present an overview of the MELODIES project, which is developing new data-intensive environmental services based on data from Earth Observation satellites, government databases, national and European agencies and more. We focus here on the capabilities and benefits of the project’s “technical platform”, which applies cloud computing and Linked Data technologies to enable the development of these services, providing flexibility and scalability

    Annotating climate data with commentary: the CHARMe project

    Get PDF
    The CHARMe project enables the annotation of climate data with key pieces of supporting information that we term “commentary”. Commentary reflects the experience that has built up in the user community, and can help new or less-expert users (such as consultants, SMEs, experts in other fields) to understand and interpret complex data. In the context of global climate services, the CHARMe system will record, retain and disseminate this commentary on climate datasets, and provide a means for feeding back this experience to the data providers. Based on novel linked data techniques and standards, the project has developed a core system, data model and suite of open-source tools to enable this information to be shared, discovered and exploited by the community

    OMIC-06. Molecular subgrouping of medulloblastoma via low-depth Whole Genome Bisulfite Sequencing.

    Get PDF
    Introduction International consensus recognises four molecular subgroups of medulloblastoma, each with distinct molecular features and clinical outcomes. The current gold-standard for subgroup assignment is DNA methylation microarray. There is an unmet need to develop platform-independent subgrouping assays which are both non-proprietary and compatible with rapidly-expanding WGS capacity in healthcare. Whole Genome Bisulfite Sequencing (WGBS) enables the assessment of genome-wide methylation status at single-base resolution. Previously, WGBS adoption has been limited by cost and sample quality/quantity requirements. Its application for routine detection of medulloblastoma subgroups has not previously been reported. Methodology Two datasets were utilised; 36 newly-sequenced low-depth (10x coverage) and 34 publicly-available high-depth (30x) WGBS medulloblastomas, all with matched DNA methylation microarray data. We compared platform concordance and identified molecular subgroups. Machine-learning WGBS-based subgroup classifiers were optimised and compared between platforms. Aneuploidy and mutation detection using WGBS was optimised and compared to microarray-derived estimates where possible. Finally, comprehensive subgroup-specific DNA methylation signatures were identified. Results We optimised a pipeline for processing, quality control and analysis of low-depth WGBS data, suitable for routine molecular subgrouping and aneuploidy assessment. We demonstrated the suitability of fresh-frozen and FFPE DNA for WGBS, and, using downsampling, showed that subgroup calling is robust at coverages as low as 2x. We identified differentially methylated regions that, due to poor representation, could not be detected using methylation microarrays. Molecular subgroups of medulloblastoma assigned using WGBS were concordant with array-based definitions, and WGBS-derived classifier performance measures exceeded microarray-derived classifiers. Conclusion We describe a platform-independent assay for molecular subgrouping of medulloblastoma using WGBS. It performs equivalently to current array-based methods at comparable cost (405vs405 vs 596) and provides a proof-of-concept for its routine clinical adoption using standard WGS technology. Finally, the full methylome enabled elucidation of additional biological heterogeneity that has hitherto been inaccessible

    Capturing and sharing our collective expertise on climate data: the CHARMe project

    Get PDF
    For users of climate services, the ability to quickly determine the datasets that best fit one's needs would be invaluable. The volume, variety and complexity of climate data makes this judgment difficult. The ambition of CHARMe ("Characterization of metadata to enable high-quality climate services") is to give a wider interdisciplinary community access to a range of supporting information, such as journal articles, technical reports or feedback on previous applications of the data. The capture and discovery of this "commentary" information, often created by data users rather than data providers, and currently not linked to the data themselves, has not been significantly addressed previously. CHARMe applies the principles of Linked Data and open web standards to associate, record, search and publish user-derived annotations in a way that can be read both by users and automated systems. Tools have been developed within the CHARMe project that enable annotation capability for data delivery systems already in wide use for discovering climate data. In addition, the project has developed advanced tools for exploring data and commentary in innovative ways, including an interactive data explorer and comparator ("CHARMe Maps") and a tool for correlating climate time series with external "significant events" (e.g. instrument failures or large volcanic eruptions) that affect the data quality. Although the project focuses on climate science, the concepts are general and could be applied to other fields. All CHARMe system software is open-source, released under a liberal licence, permitting future projects to re-use the source code as they wish

    Understanding climate data through commentary metadata: the CHARMe project

    Get PDF
    We describe the CHARMe project, which aims to link climate datasets with publications, user feedback and other items of "commentary metadata". The system will help users learn from previous community experience and select datasets that best suit their needs, as well as providing direct traceability between conclusions and the data that supported them. The project applies the principles of Linked Data and adopts the Open Annotation standard to record and publish commentary information. CHARMe contributes to the emerging landscape of "climate services", which will provide climate data and information to influence policy and decision-making. Although the project focuses on climate science, the technologies and concepts are very general and could be applied to other fields

    A novel satellite mission concept for upper air water vapour, aerosol and cloud observations using integrated path differential absorption LiDAR limb sounding

    Get PDF
    We propose a new satellite mission to deliver high quality measurements of upper air water vapour. The concept centres around a LiDAR in limb sounding by occultation geometry, designed to operate as a very long path system for differential absorption measurements. We present a preliminary performance analysis with a system sized to send 75 mJ pulses at 25 Hz at four wavelengths close to 935 nm, to up to 5 microsatellites in a counter-rotating orbit, carrying retroreflectors characterized by a reflected beam divergence of roughly twice the emitted laser beam divergence of 15 ”rad. This provides water vapour profiles with a vertical sampling of 110 m; preliminary calculations suggest that the system could detect concentrations of less than 5 ppm. A secondary payload of a fairly conventional medium resolution multispectral radiometer allows wide-swath cloud and aerosol imaging. The total weight and power of the system are estimated at 3 tons and 2,700 W respectively. This novel concept presents significant challenges, including the performance of the lasers in space, the tracking between the main spacecraft and the retroreflectors, the refractive effects of turbulence, and the design of the telescopes to achieve a high signal-to-noise ratio for the high precision measurements. The mission concept was conceived at the Alpbach Summer School 2010

    Minimal methylation classifier (MIMIC): A novel method for derivation and rapid diagnostic detection of disease-associated DNA methylation signatures

    Get PDF
    Rapid and reliable detection of disease-associated DNA methylation patterns has major potential to advance molecular diagnostics and underpin research investigations. We describe the development and validation of minimal methylation classifier (MIMIC), combining CpG signature design from genome-wide datasets, multiplex-PCR and detection by single-base extension and MALDI-TOF mass spectrometry, in a novel method to assess multi-locus DNA methylation profiles within routine clinically-applicable assays. We illustrate the application of MIMIC to successfully identify the methylation-dependent diagnostic molecular subgroups of medulloblastoma (the most common malignant childhood brain tumour), using scant/low-quality samples remaining from the most recently completed pan-European medulloblastoma clinical trial, refractory to analysis by conventional genome-wide DNA methylation analysis. Using this approach, we identify critical DNA methylation patterns from previously inaccessible cohorts, and reveal novel survival differences between the medulloblastoma disease subgroups with significant potential for clinical exploitation

    Pediatric pan-central nervous system tumor analysis of immune-cell infiltration identifies correlates of antitumor immunity

    Get PDF
    Here, using methylCIBERSORT, the authors characterize the tumour-immune microenvironment of paediatric central nervous system (CNS) tumours and its association with tumour type and prognosis. These findings suggest that immuno-methylomic profiling may inform immunotherapy approaches in paediatric patients with CNS tumour
    • 

    corecore